There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

- You have cookies disabled in your browser. You need to reset your browser to accept cookies or to ask you if you want to accept cookies.
- Your browser asks you whether you want to accept cookies and you declined. To accept cookies from this site, use the Back button and accept the cookie.
- Your browser does not support cookies. Try a different browser if you suspect this.
- The date on your computer is in the past. If your computer's clock shows a date before 1 Jan 1970, the browser will automatically forget the cookie. To fix this, set the correct time and date on your computer.
- You have installed an application that monitors or blocks cookies from being set. You must disable the application while logging in or check with your system administrator.

Why Does this Site Require Cookies?

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

What Gets Stored in a Cookie?

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

Aluminum and Aluminum alloys in acid medium. In the case of general corrosion the area of the cathodic and anodic sites is the same and thus the current densities are equal. 2.1-Corrosion of Aluminium and Aluminium Alloys If continuing maximum corrosion protection is required, the organic coating systems must be maintained periodically. The extract inhibited the corrosion of aluminium alloys in acidic media by means of hindering both cathodic and anodic electrode processes, because the greater the number of bonds in the extracts, the higher the inhibition efficiency. It is found that the inhibitive action was basically controlled by temperature, exposure time and concentration of the inhibitor 30. 3.4.1.4- black mulberry. 6. You have to design a cathodic protection system for protection of oil drilling platform structures in a marine environment. There is the possibility of calcareous deposit formation on the electrode and protected surfaces. Bring out your choice of the protection method and design aspects with respect to current requirements. 7. Can you design a biofilm sensor using electrical resistance concept in a marine environment? 8. a) A bivalent metal M is corroding in an acid solution. 39. For corrosion of a carbon steel specimen in acid solution and aerated sea water, write down the probable anodic and cathodic reactions. 40. Calculate the value for 2.303 RT/F for room temperature. 5. 41. Calculate the cell potential for.