Aquatic herbicides can develop in some plant species after continuous use of a single herbicide, and has been reported in dotted duckweed in Florida (Koschnick et al. 2006). Resistance to fluridone has also been reported in another aquatic plant, hydrilla (Hydrilla verticillata) (Michel et al. 2004). Therefore, rotating the use of herbicides with different mechanisms of action is important for preventing further development. Emerged and floating aquatic plants develop waxy cuticles similar to terrestrial plants, whereas submersed plants do not. Most herbicides are prepared in a solution of water. Water is a chemically polar material and thus can be repelled by the waxy surface of leaves. Activators reduce the surface tension of water on plants, allowing the herbicide formulation to wet leaf surfaces and enter into the plant. Wetting agents increase the ability of water to displace air or liquids from the leaf surface, allowing it to be wet by the herbicide. Aquatic Plant Identification and Herbicide Use Guide. November, 1988. Volume I: Aquatic Herbicides and Application Equipment. Howard E. Westerdahl and Kurt D. Getsinger, eds. Environmental Laboratory.