In this thesis, panoramic photography was chosen as the topic of study. The primary goal of the investigation was to understand the phenomenon of panoramic photography and the secondary goal was to establish guidelines for its workflow. The aim was to reveal what hardware and what software is required for panoramic photographs.

The methodology was to explore the existing material on the topics of hardware and software that is implemented for producing panoramic images. Later, the best available hardware and different software was chosen to take the images and to test the process of stitching the images together. The experiment material was the result of the practical work, such as the overall pro cess and experience, gained from the process, the practical usage of hardware and software, as well as the images taken for stitching panorama. The main research material was the final result of stitching panoramas.

The main results of the practical project work were conclusion statements of what is the best hardware and software among the options tested. The results of the work can also suggest a workflow for creating panoramic images using the described hardware and software. The choice of hardware
Panoramic photographs are used to make images of scenes that are too large to fit in a normal camera lens or even too big for the human eye to see at one time. Most well-known panoramas are outdoor landscape shots of geological features or city skylines, but they are useful for taking large pictures inside buildings as well. Panoramas are almost as old as photography itself. The software part of this project is handled by a few different programs, all of which are free software and available for most operating systems. Hugin is the program that manages the entire image stitching process. Most of the actual work is done by other programs, but hugin provides a convenient way to call each of them and usually tells you what to do next if you get lost. (http://hugin.sourceforge.net).