Notice to Authors

Due to the overwhelming number of submissions to IRRODL, the journal has already met its publication quota for 2019. As a result, for a period that will not exceed six months, IRRODL will no longer be accepting submissions after May 1, 2019. In order to improve our service to the academic community, and to ensure a six month review to publication cycle, IRRODL will be moving to a regularized publication schedule in 2020. More information will be provided later this year.

We thank our authors, reviewers, and readers for their unwavering and exceptional support in making our journal one of the world's most successful, open access journals in the field of open and distributed learning.

Research Articles

Quality Standards in eLearning: A matrix of analysis

Jia Frydenberg

DOI: https://doi.org/10.19173/irrodl.v3i2.109

Keywords: e-Learning, online learning, Web-based learning, quality standards, development delivery and support of online learning

Abstract

Most institutions of postsecondary and higher education are creating or adopting quality statements, standards, and criteria regarding their
niche of the “eLearning enterprise.” In doing so, they have a tendency to reinvent the wheel. This article summarizes current published quality standards in the US, and analyzes and organizes them into a nine-cell matrix. It concludes with discussion of emerging issues with respect to the nine standards-areas.

Key Terms: ELearning, online learning, Web-based learning, quality standards; development, delivery and support of online learning

Author Biography

Jia Frydenberg

Jia Frydenberg, Ed.D., heads the University of California Irvine Distance Learning Center, a nexus of expertise in the development, delivery, and support for asynchronous distance learning. She holds a Master’s degree in Linguistics from the University of Michigan and a Doctorate in education from UCLA. She can be contacted at gfrydenb@uci.edu.
Factor analysis typically incorporates more domain specific assumptions about the underlying structure and solves eigenvectors of a slightly different matrix. PCA is also related to canonical correlation analysis (CCA). A standard result for a positive semidefinite matrix such as XX^T is that the quotient's maximum possible value is the largest eigenvalue of the matrix, which occurs when w is the corresponding eigenvector. The truncation of a matrix M or T using a truncated singular value decomposition in this way produces a truncated matrix that is the nearest possible matrix of rank L to the original matrix, in the sense of the difference between the two having the smallest possible Frobenius norm, a result known as the Eckart–Young theorem [1936]. Learn how to solve many machine learning problems using our old math friend: matrix decompositions. In machine learning and statistics, we often have to deal with structural data, which is generally represented as a table of rows and columns, or a matrix. A lot of problems in machine learning can be solved using matrix algebra and vector calculus. In this blog, I’m going to discuss a few problems that can be solved better and faster in R through the use of matrix decompositions. This article analyzes the quality standards for higher education in the United States, and organizes them into a nine-cell matrix.