Cardiovascular Adjustments to Gravitational Stress

C. Gunnar Blomqvist, H. Lowell Stone

10.1002/cphy.cp020328

Source: Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow

Originally published: 1983

Published online: January 2011

Full Article on Wiley Online Library

Abstract

The sections in this article are:

1 Hydrostatic Pressure
 1.1 Models
 1.2 Hydrostatic Indifference Point
 1.3 Transmural Pressure and Tissue Filtration
2 Immediate Cardiovascular Responses to Posture Changes and Blood Volume Redistribution
 2.1 Experimental Conditions
 2.2 Blood Volume and Distribution
 2.3 Intravascular and Intracardiac Pressures
 2.4 Cardiac Dimensions and Pump Performance
 2.5 Cardiac Output
 2.6 Regional Flow
 2.7 Postural Effects on Hemodynamic Responses to Exercise
 2.8 Dynamic Responses to Posture Changes
3 Cardiovascular Adaptation to Prolonged Bed Rest, Zero Gravity, and Related Conditions
 3.1 Experimental Conditions
 3.2 Body Composition
 3.3 Blood Volume
 3.4 Cardiovascular Function
 3.5 Dynamic Responses
4 Hypogravic Conditions
 4.1 Experimental Conditions
 4.2 Fluid Shifts
 4.3 Cardiac Dimensions and Performance
 4.4 Cardiac Output and Regional Flow
 4.5 Dynamic Responses and Reflex Adjustments

How to cite. Cardiovascular Adjustments to Thermal Stress. Loring B. Rowell. 10.1002/cphy.cp020327. brown, e., j. s. goei, a. d. m. greenfield, and g. c. plassaras. Circulatory responses to simulated gravitational shifts of blood in man induced by exposure of the body below the iliac crests to subâ€ atmospheric pressure. J. Physiol. London 183: 607â€“627, 1966. Does stress cause or exacerbate cardiovascular diseases? The stress phenomenon is illustrated and the impact of stress on the circulatory system is examined. In particular, the pathophysiological significance of stress in hypertension, atherosclerosis, coronary artery disease, myocardial infarction (and others) is described. Stress plays a major role in various (patho)physiological processes associated with the circula-tory system. Thereby, it potentially has ameliorating or detrimental capacities. However, with regard to cardiovascular diseases, stress most often is related to deleterious re- Continuous cardiovascular measurements were collected during the centrifugation sessions using a non-invasive monitoring system. The cardiovascular responses were more prominent at higher levels of AG and exercise intensity. The observed changes in cardiovascular performance have been attributed to the loss of hydrostatic pressure gradients in microgravity (Charles and Lathers, 1991; Williams et al., 2009), causing a series of physiological adaptations, including a fluid shift from the lower extremities to the upper part of the body, a decrease in circulating blood volume, cardiac atrophy, an increase in venous compliance, a reduction of the baroreflex sensitivity (CIÅ†ment and Bukley, 2007), and other alterations in autonomic function (Mandsager et al., 2015).
Does stress cause or exacerbate cardiovascular diseases? The stress phenomenon is illustrated and the impact of stress on the circulatory system is examined. In particular, the pathophysiological significance of stress in hypertension, atherosclerosis, coronary artery disease, myocardial infarction (and others) is described. Stress plays a major role in various (patho)physiological processes associated with the circulatory system. Thereby, it potentially has ameliorating or detrimental capacities. However, with regard to cardiovascular diseases, stress most often is related to deleterious re Continuous cardiovascular measurements were collected during the centrifugation sessions using a non-invasive monitoring system. The cardiovascular responses were more prominent at higher levels of AG and exercise intensity. The observed changes in cardiovascular performance have been attributed to the loss of hydrostatic pressure gradients in microgravity (Charles and Lathers, 1991; Williams et al., 2009), causing a series of physiological adaptations, including a fluid shift from the lower extremities to the upper part of the body, a decrease in circulating blood volume, cardiac atrophy, an increase in venous compliance, a reduction of the baroreflex sensitivity (Clément and Bukley, 2007), and other alterations in autonomic function (Mandsager et al., 2015).