Effects of walking exercise on nocturia in the elderly
Kimio SUGAYA, Saori NISHIJIMA, Tomoko OWAN, Masami ODA, Minoru MIYAZATO, Yoshihide OGAWA

We investigated whether nocturia in the elderly was improved by walking exercise, which involved walking rapidly for 30 min or more in the evening or night for 8 weeks. A questionnaire related to micturition and exercise, blood pressure, body composition analysis, blood biochemistry tests, and urinalysis were performed before and after 8 weeks of exercise to investigate the effects of walking. Thirty men (71 years old on average) continued the walking exercise for long enough to undergo evaluation. The number of episodes of nocturia decreased significantly (p < 0.001) from 3.3 ± 0.7 to 1.9 ± 0.8 after 8 weeks of walking exercise. The daytime urinary frequency, blood pressure, body weight, body fat ratio, edema ratio, serum catecholamines, triglycerides, and total cholesterol were also decreased. After 8 weeks of exercise, 20 of the subjects (67%) stated that sleep was deeper than before exercise. Assessment of the overall improvement showed that excellent or good results were obtained in 18 patients (60%). The main factor related to the influence of walking exercise on nocturia was that sleep became deeper, which increased the arousal threshold bladder volume. Walking exercise may also have a preventive effect on lifestyle-related diseases.
To determine adverse reactions and effects on sleep among three groups of patients: those taking triazolam, those taking nitrazepam, and a control group. Telephone interviews. Forty-seven patients taking triazolam, 36 taking nitrazepam, and 40 control patients. Nocturia in a large proportion of elderly men with lower urinary tract symptoms is caused by nocturnal polyuria and natriuresis.

Authors: Hiroyuki Shimada Children’s Hospital Los Angeles United States. Research Team for Promoting Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan. Background: Reduced gait speed and stride length are characteristic of gait in elderly people and increase their dependency on assistance. We developed a robotic stride assistance system (SAS) to automatically control the walk ratio during walking. Our aim was to quantify the effects of a walking exercise with the SAS on walking performance and glucose metabolism during walking in community-dwelling elderly adults.