A Completions Guide Book to Shale-Play Development: A Review of Successful Approaches toward Shale-Play Stimulation in the Last Two Decades

Abstract
Almost three decades have passed since the early exploration of the north Texas, Barnett shale. The Barnett serves as an example study for the shale life cycle. Operators in North America have used the Barnett-shale development as a roadmap for the exploration of new shale plays like the Marcellus, Haynesville, and Eagle Ford, as well as others. Each new shale play is unique in nature with respect to geologic setting, lithology, and production mechanism. It is useful to have a defined strategy for the discovery, development, and decline phases of each individual shale play. The roadmap to shale well-completion designs should include the following key factors:

• Fracability: capability of the reservoir to be fracture stimulated effectively
• Producibility: capability of the completion plan to sustain commercial production
• Sustainability: capability of the field development to meet both economic and environmental constraints

This paper reviews the evolution and development of completion practices of the major US shale reservoirs in the last two decades and presents a roadmap for effective completion practices for shale stimulation. The completion roadmap uses the history of 16,000 shale frac stages in the Barnett, Woodford, Haynesville, Antrim, and Marcellus shales. Following the map through specific decision points will alter the path for individual shales. These decision points will be influenced by geologic, geochemical, and geomechanical information gathered along the way. The path toward a commercially viable shale play from the early asset-evaluation phase to the late asset maintenance-and-remediation phase evolves from a series of decision trees throughout the process. Information presented in this paper provides a completion engineer with better understanding of the factors involved in shale-play stimulation and provides a methodical approach to select appropriate and optimum solutions that have evolved during the last two decades.

Introduction
In the mid 1800s, expanding uses for oil extracted from coal and shale began. Gas production from the Devonian shale in the US can be traced back to 1821. A review of more recent shale exploration and development can be found in SPE reprint series No. 45, “Production from Fractured Shales?” (Lancaster et al. 1996). As the title infers, commercial production from nanodarcy shale was most likely from the existing natural fractures providing “transmissibility and economic permeability.” Later, when more cores became available, the natural fractures that existed in most gas-shale plays like the north Texas Barnett were found to be filled with calcite or quartz, not oil or gas (Lancaster et al. 1996).

However, filled natural fractures are thought to have dilated during the massive hydraulic fractures used to stimulate the Barnett from 1985 to 1991. This dilation of filled fractures created the large fracture networks, exposing large surface areas and sustainable production.

The north Texas Barnett serves as a study in shale-completion evolution. Table 1 illustrates the Barnett development history.

File Size 4 MB Number of Pages 27
ENHANCE YOUR OILFIELD ROI.

Let us show you why operators across the U.S. trust us to deliver outstanding results.

LEARN MORE
Looking for more?

Some of the OnePetro partner societies have developed subject-specific wikis that may help.

PetroWiki was initially created from the seven volume *Petroleum Engineering Handbook (PEH)* published by the Society of Petroleum Engineers (SPE).
The approach leverages current completion data whether successful or unsuccessful to build a knowledgebase which can guide us towards optimal future completion strategies sooner by reducing the amount of trial and error required. Understanding completion efficiency of existing shale gas wells is always a challenge. The boom in the development of the shale gas reservoirs, especially in North America (i.e. Haynesville, Marcellus, Woodford, Barnett), is being supported by the continuous development and improvement of the critical completion and stimulation technologies. In the nascent period of shale play development, operators were looking for the next Barnett Shale. Although lessons learned from the Barnett Shale and other unconventional plays were crucial for hastening commerciality and acceptability of shales as viable prospects, operators realized early on that each new development required a specific and often unique approach. To design and properly execute an effective hydraulic stimulation, engineers must understand the interactions of fractures in complex fracture networks typical of those in the Vaca Muerta play. One distinctive aspect of the YPF workflow is the UFM unconventional fracture model software used to model hydraulic fracture creation and propagation.