This paper discusses a historical process in which early aeronautical engineers examined the reliability of data from wind tunnels and their applicability to the prediction of the performance of full-scale aircraft. It specifically follows the case in 1910s Britain before and during the First World War. In the early 1910s, engineers at the National Physical Laboratory (NPL) constructed wind tunnels and checked their operability as scientific instruments. Based on this preliminary examination, wind tunnels were employed in experimental research on airplane stability. After the eruption of the war, however, the discrepancy became recognized between the predicted performance of airplanes designed on the basis of data from the NPL and their real performance in flight. This recognition led to the investigation of its possible sources and causes by representatives from the NPL as well from the Royal Aircraft Factory, where flight tests as well as wind tunnel experiments were actively conducted. Their investigative activity was controversial and confrontational, as is visible in the minutes and reports of the committee organized for this purpose. This paper traces the detailed process of this search for the source or cause of the discrepancies, which concluded with only a partial success in its investigation.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Journal/Citation Details</th>
<th>Cited References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas WRIGHT</td>
<td>Annals of Science 49, 233-254, 1992</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D. M. MCDOWELL</td>
<td>Osborne Reynolds and Engineering Science Today, 1970</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Edward PYATT</td>
<td>The National Physical Laboratory: A History, 1983</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D. M. MCDOWELL</td>
<td>Osborne Reynolds and Engineering Science Today, 1970</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Thomas STANTON</td>
<td>Minutes of Proceedings of the Institution of Civil Engineers 156, 78-139, 1903</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Takehiko HASHIMOTO</td>
<td>Leonard Bairstow as a Scientific Middleman: Early Aerodynamic Research on Airplane Stability in Britain, 1909-1920</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ACA</td>
<td>Technical Report of the Advisory Committee for Aeronautics for the Year 1910-1911, 1911</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lord RAYLEIGH</td>
<td>The Principle of Dynamical Similarity in Reference to the Results of Experiments on the Resistance of Square Plates Normal to a Current of Air, 1911</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L. BAIRSTOW</td>
<td>The Use of Models in Aeronautics, 1912</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L. BAIRSTOW</td>
<td>Investigation into the Steadiness of Wind Channels, as Affected by the Design Both of the Channel and of the Building by Which It Is Enclosed or Shielded, 1912</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L. BAIRSTOW</td>
<td>The Experiments on (a) The Variation of the Lift and Drift Coefficients of a Model Aerofoil as the Speed Changes [and on] (b) Small Scale Models of Large Aerofoils Which Have Been Tested at the Aerotechnical Institute of the University of Paris, 1912</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Henry Reginald Arnulf Mallock</td>
<td>Obituary Notices of Fellows of the Royal Society 1, 95-100, 1933</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>David K. BROWN</td>
<td>The Way of the Ship in the Midst of the Sea: The Life and Work of William Froude 14, 2006</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Mr. Mallock's Memorandum on Proposed Experiments with Flying Machines, 1911

BAIRSTOW Leonard
Proposals for Experiments on Aeronautics in Flight, 1915

RAF Staff
Comparison of Lift Coefficients of Full Size and Model Aerofoils, 1916

RAF
Application 2

Summary of Events in Connection with the Discussion with N. P. L. on the Experimental Determination of the Resistance of Aeroplane Wing Sections, 1917

Full Scale Experiments (Climbs & Glides) on B. E. 2c No. 2029 with Method of Reduction of Results, 1916

RAF
Experimental Determination of the Resistance of Full Scale Aeroplanes

RAF
The Prediction and Experimental Investigation of Aeroplane Performance: Illustrations, 1917

RAF
Collection of Data for the Prediction of Performance of Aeroplanes, 1917

BAIRSTOW Leonard
Data, Notes and References on Scale Effect, 1917

PETAVEL J. E.
Preliminary Notes on Scale Effect, 1917

RAF
<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
</table>
| BAIRSTOW | BAIRSTOW L.
Note Relative to Sc.E.6, 1917 |
| RAF | RAF
Reply to Sc.E.4, 1917 |
| BAIRSTOW L. | BAIRSTOW L.
Note Relative to Sc.E.6, 1917 |
| TAYLOR G. I. | TAYLOR G. I.
Pressure Distribution over the Wing of an Aeroplane in Flight, 1916 |
| RAF | RAF
R.A.F. 14 Wing Section : Measurement of the Pressure Distribution round Sections of the Top and Bottom Wings of an Aeroplane in Flight, 1917 |
| NPL | NPL
Pressure Plotting on Sections of the Upper and Lower Wings of a Biplane with R.A.F. 14 Wings, 1917 |
| RELF E. F. | RELF E. F.
Effect of Propeller on Pressures round a Section of R.A.F. 14 on B. E. 2c Machine, 1917 |
| Scale Effect Subcommittee | Scale Effect Subcommittee
Relation between Model Tests and the Full Scale Performance of Aeroplanes, 1917 |

The Wind Tunnel and the Emergence of Aeronautical Research in Britain

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author</th>
</tr>
</thead>
</table>
| HASHIMOTO Takehiko | HASHIMOTO Takehiko
Atmospheric Flight in the Twentieth Century, 223-239, 2000 |
| ECKERT Michael | ECKERT Michael
The Dawn of Fluid Dynamics : A Discipline between Science and Technology, 2006 |
| ANDERSON John D. | ANDERSON John D.
A History of Aerodynamics, 1997 |
キーワード

wind tunnel
model experiment
aerodynamics
aeronautics
scale effect
Advisory Committee for Aeronautics
National Physical Laboratory
Royal Aircraft Factory

各種コード

NII論文ID(NAID)： 110008513377
NII書誌ID(NCID)： AA11081495
本文言語コード： ENG
資料種別： ART
ISSN： 02854821
データ提供元： CJP書誌 NII-ELS

書き出し

RefWorksに書き出し
EndNoteに書き出し
Mendeleyに書き出し
Refer/BibXで表示
RISで表示
BibTeXで表示
TSVで表示
Design of experiments is a series of tests in which purposeful changes are made to the input variables of a system or process and the effects on response variables are measured. Design of experiments is applicable to both physical processes and computer simulation models. Experimental design is an effective tool for maximizing the amount of information gained from a study while minimizing the amount of data to be collected. If data are collected from all of the vertices, the design is a full factorial, requiring 2^p runs. Since the total number of combinations increases exponentially with the number of factors studied, use of the simple additive model assumes independently on the response variable, which is not a very reasonable assumption. Wind tunnel modeling is accepted as a method for aiding in Green building design. For instance, the use of boundary layer wind tunnel modeling can be used as a credit for Leadership in Energy and Environmental Design (LEED) certification through the U.S. Green Building Council. Wind tunnel tests in a boundary layer wind tunnel allow for the natural drag of the earth's surface to be simulated. How it works. Six-element external balance below the Kirsten Wind Tunnel. The aerodynamic principles of the wind tunnel work equally well for watercraft, except the water is more viscous and so imposes a greater forces on the object being tested. A looping flume is typically used for underwater aquadynamic testing. Low-speed Oversize Liquid Testing. He discusses how experimenting on a mother is no less than experimenting on a dog.

B. Annotate the text for: I. Introduction A) Exordium – “The right to know is like the right to live.” B) Exposition – “The pains of life are more numerous and constant than its o pleasures, and that therefore we should all be better dead.” C) Proposition – “If you cannot attain to knowledge without torturing a dog, you must do without knowledge.” Therefore, they believe it is not true that animal experiments are responsible for reducing the number of wild animals on the planet. On the other hand, others feel that there are good arguments against this. First and foremost, animal experiments are unkind and cause animals a lot of pain.