Designing interfaces for an overlooked user group: Considering the visual profiles of partially sighted users

Julie A. Jacko, Andrew L. Sears

College of Information Sciences and Technology

Abstract

In this position paper we argue the importance of research focusing on the issues involved in designing computer systems for partially sighted computer users. Currently, there is a lack of data that explores how combinations of impaired visual processes affect preferences for, and performance with, graphical user interfaces. This lack of fundamental information about how an individual's visual profile determines the strategies and behaviors exhibited while using computers limits our ability to design effective user interfaces for partially sighted computer users. The objective of this position paper is to motivate research that addresses this deficiency in our knowledge base so that researchers can design enabling technologies in a systematic fashion for this unique user group as has been done for fully sighted users and blind users.
If the new owner is a Windows user or Windows group for which there is no corresponding database-level principal, a database user will be created.

Return Code Values. 0 (success) or 1 (failure). How to: Upgrade a Visual Studio 2010 Custom Test Condition from a Previous Release to SQL Server Data Tools. Troubleshooting SQL Server Database Unit Testing Issues. Extending the Database Features. Designing interfaces for an overlooked user group: considering the visual profiles of partially sighted users. Julie A. Jacko, Andrew Sears. Pages: 75-77. Auditory navigation in hyperspace: design and evaluation of a non-visual hypermedia system for blind users. Sarah Morley, Helen Petrie, Anne-Marie O'Neill, Peter McNally. Pages: 100-107. Designing interfaces for an overlooked user group: Considering the visual profiles of partially sighted users. In Third Annual ACM Conference on Assistive Technologies, pages 75-77, 1998. This research focuses on characterizing visually impaired computer users performance on graphical user interfaces by linking clinical assessments of low vision with visual icon identification. This was accomplished by evaluating user performance on basic identification and selection tasks within a graphical user interface, comparing partially sighted user performance with fullysighted user performance, and linking task performance to specific profiles of visual impairment.