New Solutions for Well-Test-Analysis Problems: Part 1-Analytical Considerations
(includes associated papers 28666 and 29213)

Authors
Erdal Ozkan (U. of Tulsa) | Rajagopal Raghavan (U. of Tulsa)

DOI
https://doi.org/10.2118/18615-PA

Document ID
SPE-18615-PA

Publisher
Society of Petroleum Engineers

Source
SPE Formation Evaluation

Volume
6

Issue
03

Publication Date
September 1991

Summary
Point-source solutions are derived in the Laplace-transform domain and an extensive library of solutions is documented to obtain pressure distributions and well responses for a wide variety of wellbore pressure distributions and well responses for a wide variety of wellbore configurations: partially penetrating vertical wells, horizontal wells, and fractured wells (complete or limited entry). Wells may be located in infinite or bounded systems (rectangular or circular reservoirs). Several combinations of closed and/or constant-pressure boundary conditions are considered at the vertical and lateral reservoir boundaries. These solutions may be used to examine homogeneous or naturally fractured reservoirs.

Introduction
In 1973, Gringarten and Ramey I considerably expanded our ability to solve problems of transient flow by exploring the use of source functions and the Newman product method. Their work provides an extensive and useful library of solutions. The utility of their solutions can be enhanced tremendously if the Laplace transforms of their solutions are available. The transformed solutions can also be used for history-matching purposes, with use of the Stehfest algorithm, and will make it easier to consider variable-rate conditions such as wellbore storage and constant-pressure production.

Our objectives are to present a suite of solutions in terms of the Laplace-transform variable and to demonstrate the utility of these solutions. The solutions we present are applicable to the naturally fractured reservoir conditions. Obtaining solutions in terms of the transform variable is only the first step in computing well responses. We address the computation aspects in Part 2.

Basic Solution of Governing Flow Equations

We consider the flow of a slightly compressible fluid in an infinite double-porosity medium commonly used to model the behavior of naturally fractured reservoirs. We use the model suggested by Warren and Roots to derive the basic differential equations. The solutions we obtain can also be applied to de Swaan-O’s model. We assume that flow in the medium results from the instantaneous withdrawal of fluids from a sphere of vanishingly small radius.
Some New Solutions to Solve Problems in Well Test Analysis: Part 1 - Analytical Considerations

Ozkan, E., U. of Tulsa
Raghavan, R., U. of Tulsa

18615-MS SPE General - 1988

Export citation
View rights & permissions

Quick Abstract Metrics
ENHANCE YOUR OILFIELD ROI.

Let us show you why operators across the U.S. trust us to deliver outstanding results.

LEARN MORE

C&J ENERGY SERVICES
Looking for more?

Some of the OnePetro partner societies have developed subject-specific wikis that may help.

PetroWiki was initially created from the seven volume Petroleum Engineering Handbook (PEH) published by the Society of Petroleum Engineers (SPE).
New Solutions for Well-Test-Analysis Problems: Part 1-Analytical Considerations (includes associated papers 28666 and 29213). 2 downloads in the last 30 days. 745 downloads since 2007. Some New Solutions to Solve Problems in Well Test Analysis: Part 1 - Analytical Considerations. Ozkan, E., U. of Tulsa. Raghavan, R., U. of Tulsa. Well test analysis is a critical tool to understand well and reservoir performance. Unlike any other oil and gas surveillance activity, a pressure transient test provides information about well and reservoir performance (permeability-thickness KH and skin S), hydraulic connectivity over large volume and average reservoir pressure. It gives the ability to understand reservoir flow behaviour in a simple and powerful way. More and more information about the wells and reservoir are extracted from the rate and pressure data by using modern well test analysis tools and techniques. Read the associated paper in Diabetes Technology and Therapeutics (2011). EasyGV by Nathan R Hill. © University of Oxford 2010+. General disclaimer. This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substi