System-on-Chip Design and Test with Embedded Debug Capabilities

Tushti Marwah, University of Tennessee - Knoxville

Date of Award
8-2006

Degree Type
Thesis

Degree Name
Master of Science

Major
Electrical Engineering

Major Professor
Donald W. Bouldin

Committee Members
Syed Islam, Mohammed Ferdjallah

Abstract
In this project, I started with a System-on-Chip platform with embedded test structures. The baseline platform consisted of a Leon2 CPU, AMBA on-chip bus, and an Advanced Encryption Standard decryption module. The basic objective of this thesis was to use the embedded reconfigurable logic blocks for post-silicon debug and verification.

The System-on-Chip platform was designed at the register transistor level and implemented in a 180-nm IBM process. Test logic instrumentation was done with DAFCIA (Design Automation for Flexible Chip Architecture) Inc. pre-silicon tools. The design was then synthesized using the Synopsys Design Compiler and placed and routed using Cadence SOC Encounter. Total transistor count is about 3 million, including 1400K transistors for the debug module serving as on chip logic analyzer. Core size of the design is about 4.8mm x 4.8mm and the system is working at 151MHz. Design verification was done with Cadence NCSim.

The controllability and observability of internal signals of the design is greatly increased with the help of pre-silicon tools which helps locate bugs and later fix them with the help of post-silicon tools. This helps prevent re-spins on several occasions thus saving millions of dollars. Post-silicon tools have been used to program assertions and triggers and inject numerous personalities into the reconfigurable fabric which has greatly increased the versatility of the circuit.

Recommended Citation
Marwah, Tushti, "System-on-Chip Design and Test with Embedded Debug Capabilities."
https://trace.tennessee.edu/utk_gradthes/1734
You're designing it.

Cypress's PSoC® programmable system-on-chip platform gives you the freedom to imagine revolutionary new products and the capability to get to market faster than anyone else. PSoC is a true programmable embedded SoC integrating configurable analog and digital peripheral functions, memory and a microcontroller on a single chip. With an extremely flexible visual embedded design methodology that includes preconfigured, user-defined peripherals and hierarchical schematic entry, you can change your mind as often as you want and stay on schedule. No more restarting projects from