Cardiovascular reflex control by afferent fibers from skeletal muscle receptors

Jere H. Mitchell, Robert F. Schmidt

10.1002/cphy.cp020317

Source: Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow

Originally published: 1983

Published online: January 2011

Full Article on Wiley Online Library

Cardiovascular Reflex Control by Afferent Fibers from Skeletal Muscle Receptors

The sections in this article are:

1 Afferent Fibers from Skeletal Muscle and Their Receptors
 1.1 Composition of Muscle Nerves
 1.2 Muscle Spindles and Golgi Tendon Organs
 1.3 Receptive Properties of Group III and Group IV Afferent Fibers
 2 Central Pathways for Cardiovascular Reflexes from Skeletal Muscle Receptors
 2.1 Spinal Termination of Primary Muscle Afferents
 2.2 Central Pathways Arising From Myelinated Primary Muscle Afferents
 2.3 Central Pathways Arising From Unmyelinated Primary Muscle Afferents
 2.4 Ascending and Descending Spinal Pathways Involved in Cardiovascular Reflex Control From Skeletal Muscle
 3 Organization of Efferent Outflow in Pre- and Postganglionic Neurons
 4 Cardiovascular Responses from Skeletal Muscle Receptors
 4.1 Effect of Activation of Afferent Fibers
 4.2 Effect of Induced Muscular Contraction (Simulated Exercise)
 5 Interaction of Muscle Afferents with Other Cardiovascular Reflexes
 5.1 Arterial Baroreceptors
 5.2 Cardiopulmonary Vagal Afferents
 5.3 Peripheral Control
 5.4 Integration of Neural Control Mechanisms During Exercise
 7 Conclusion

Cardiovascular Reflex Control by Afferent Fibers from Skeletal Muscle Receptors

Jere H. Mitchell, Robert F. Schmidt

Pages: 623-658. Thermoreceptors Richard Hellow Pages: 659-673. Interaction of Cardiovascular Reflexes in Circulatory Control Francois M. Abboud Pages: 675-753. Arterial Baroreflexes in Humans Giuseppe Mancia, Allyn L. Mark Pages: 755-793. Cardiopulmonary Baroreflexes in Humans Allyn L. Mark, Giuseppe Mancia Pages: 795-813. Peptides and Blood Vessels Philip G. Schmid, Fouad M. Sharabi, M. Ian Phillips Pages: 815-835. Neural and Endocrine Regulation of Circulation in the Fetus and Somatic responses are solely based on skeletal muscle contraction. The autonomic system, however, targets cardiac and smooth muscle, as well as glandular tissue. By this explanation, the visceral sensory fibers from the mediastinal region, where the heart is located, would enter the spinal cord at the same level as the spinal nerves from the axillary and brachial regions. Somatic reflexes involve sensory neurons that connect sensory receptors to the CNS and motor neurons that project back out to the skeletal muscles. The neuron, connected to the smooth muscle, is a postganglionic parasympathetic neuron that can be controlled by a fiber found in the vagus nerve.
the shoulder and arm, so the brain misinterprets the sensations from the mediastinal region as being from the axillary and brachial regions. Somatic reflexes involve sensory neurons that connect sensory receptors to the CNS and motor neurons that project back out to the skeletal muscles. That neuron, connected to the smooth muscle, is a postganglionic parasympathetic neuron that can be controlled by a fiber found in the vagus nerve.