A primer on the dynamic simulation of income model (DYNASIM3)
A Primer on The Dynamic Simulation of Income Model (DYNASIM3)

DYNASIM3 is a dynamic microsimulation model designed to analyze the long-run distributional consequences of retirement and aging issues. Starting with a representative sample of individuals and families, the model "ages" the data year by year, simulating such demographic events as births, deaths, marriages and divorces, and such economic events as labor force participation, earnings, hours of work, disability onset, and retirement. The model simulates Social Security coverage and benefits, as well as pension coverage and participation, and benefit payments and pension assets. It also simulates home and financial assets, health status, living arrangements, and income from non-spouse family members (co-residents). In addition, it calculates SSI eligibility, participation, and benefits.\(^1\)

DYNASIM has a long history at the Urban Institute. It was originally developed here in the 1970s. A revised version of the model, DYNASIM2, was built in the early 1980s specifically to analyze retirement income issues (for an overview of the model's earlier development, see Zedlewski 1990). DYNASIM3 represents a major update of the model. It includes a more recent starting sample and recent information on demographics and family economics. DYNASIM3 also includes new household saving and private pension coverage modules, and Social Security and Supplemental Security Income (SSI) calculators.\(^2\)

The DYNASIM3 model has been used recently to simulate how potential changes to Social Security will affect the future retirement benefits of at-risk populations, such as elderly widows and widowers, and certain divorcees and spouses (Favreault and Sammartino 2002; Favreault, Sammartino, and Steuerle 2002). The Institute has also used it to explore annuitization effects under a Social Security system with personal accounts (Uccello et al. 2003), potential retirement consequences of rapid work effort growth among low-wage, single mothers in the late 1990s (Johnson, Favreault, and Goldwyn 2003), and the implications of recent earnings inequality patterns for future retirement income (Smith 2003). Ongoing work examines personal account proposals and how they would intersect with current patterns of wealth accumulation and retirement preparedness (Butrica and Uccello forthcoming).

The remainder of this paper briefly summarizes the input data and key characteristics of the DYNASIM3 model to give an overall sense of the model's content. We outline the data used in the various estimation procedures and generally describe the structure of each module. We also include some baseline projections produced by a recent version of the model to provide a fuller sense of the model's capacity. More detailed documentation of DYNASIM3 is available upon request from the authors, and in the recent application papers mentioned above, available on the Institute's web site.

1 This version of DYNASIM was developed through a grant from the Mellon Foundation and a generous Urban Institute investment.

2 Many of these new modules were adapted from those designed by the Urban Institute for the Social Security Administration's Model of Income in the Near Term (see Toder et al. 2002).

Acknowledgments

Many individuals have contributed to the development of the DYNASIM3 model over the years, too numerous to mention. However, the authors would especially like to thank Frank Sammartino (currently at the Joint Economic Committee of the U.S. Congress) for his contribution to this version of the model during his tenure at the Urban Institute. Eugene Steuerle and Sheila Zedlewski also provided critical leadership in the model's redevelopment. Nonetheless, responsibility for any errors in the model rests primarily with the authors.

The development of DYNASIM3 was supported through a grant from the Mellon Foundation and internal Urban Institute development funds.

TOPICS/TAGS: RETIREMENT AND OLDER AMERICANS

Related Publications

- Five Ways to Improve the Distribution of Government Pension Benefits
- Could a Cash Balance Plan Benefit Illinois Public School Teachers?
- Reforming Government Pensions to Better Distribute Benefits

Other Publications by the Authors

- Melissa M. Favreault
- Karen E. Smith

Usage and reprints: Most publications may be downloaded free of charge from the web site and may be used and copies made for research, academic, policy or other non-commercial purposes. Proper attribution is required. Posting UI research papers on other websites is permitted subject to prior approval from the Urban Institute—contact publicaffairs@urban.org.

If you are unable to access or print the PDF document please contact us or call the Publications Office at (202) 261-5687.

Disclaimer: The nonpartisan Urban Institute publishes studies, reports, and books on timely topics worthy of public consideration. The views expressed are those of the authors and should not be attributed to the Urban Institute, its trustees, or its funders. Copyright of the written materials contained within the Urban Institute website is owned or controlled by the Urban Institute.
A Primer on the Dynamic Simulation of Income Model (DYNASIM3)

www.urban.org. model, income, simulation, dynamic, primer. International journal of microsimulation (2007) 1(1) 35-53 dynamic microsimulation of health care demand, health care finance and the economic impact of health www.spielauer.ca. health, demand, finance, economic, impact. Modeling & Simulation of Dynamic Systems â€“ a Tutorial James H. Taylor Department of Electrical & Computer Engineering University of New B... Â Note that there are implicit â€œzero-order holdsâ€ operating on the elements of uk. It is usually not a good practice to develop an ode model that includes both very fast 4.2) with the following ordinary differential equation set: x E^{hc}(t) = fc(xc, zc, uk, uk). In fact, rather. 20), we may replace the form in (1) with the following constrained ode set: x E^{hc}(t) = fc(xc) and t is time.