Performance Prediction Of A Folding Fin Aircraft Rocket Using Datcom, Sens5D, And 6Dof Gem

Kralewski, Sara Louise

URI: http://hdl.handle.net/11122/8536
Date: 1998
Subject: Aerospace engineering
Type: Theses

Abstract:
An approach for the performance prediction of a Folding Fin Aircraft Rocket (FFAR) is presented. This prediction was compiled by calculating the gravimetrics, aerodynamics, and trajectory for a FFAR. The trajectory analysis utilized four computer codes: Rogers Aeroscience Rocket Performance Software, NASA Wallops Sens5d Trajectory and Wind-Sensitivity Calculations for Unguided Rockets, the United States Air Force (USAF) Stability and Control DATCOM, and the NASA Langley Research Center LRC-MASS program (GEM). Computations were performed for a rigid body configuration. This analysis was compared to radar data collected during the flight of a FFAR launched in February 1997 at the Poker-Flat Research Range. The comparison shows good agreement between the flight data and the predicted apogee and impact point of the vehicle. In addition, static and dynamic stability analyses were completed for the FFAR.

Description:
Thesis (M.S.) University of Alaska Fairbanks, 1998

Files in this item
Name: Kralewski_S_1998.pdf
Size: 2.784Mb
Format: PDF

This item appears in the following Collection(s)
- Theses (Mechanical Engineering)
- Older Theses Not Clearly Affiliated with a Current College

Search ScholarWorks@UA

This Collection
Advanced Search
Browse
- All of ScholarWorks@UA
 - Communities & Collections
 - By Issue Date
 - Authors
 - Titles
 - Subjects
 - By Type

This Collection
- By Issue Date
- Authors
- Titles
- Subjects
- By Type

My Account
- Login

Statistics
- View Usage Statistics

POLICIES | FEEDBACK
ABOUT US | HELP | BROWSE | ADVANCED SEARCH

The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system. ©UAF 2013 - 2015 | Questions? ua-scholarworks@alaska.edu | Last modified: May 5, 2015

The Mk 4 Folding-Fin Aerial Rocket (FFAR), also known as Mighty Mouse, was an unguided rocket used by United States military aircraft. 2.75 inches (70 mm) in diameter, it was designed as an air-to-air weapon for interceptor aircraft to shoot down enemy bombers, but primarily saw service as an air-to-surface weapon. The advent of jet engines for fighters and bombers posed new problems for interceptors. With closing speeds of 1,500 ft/s (457 m/s) or more for a head-on interception, the time available - Variation in rocket motor performance: because of the tolerance in rocket-motor design, propellant properties, and manufacturing, the total impulse of the rocket motor may vary. - Thrust and fin misalignments: it is an important source of dispersion in case of unguided rockets "flying on open loop". In order to predict the trajectory of an unguided artillery rocket, six degrees of freedom 6-DOF mathematical model is presented in [1,6], where the block diagram of this model is shown in Fig. 1. In this study, a trajectory calculation using a 6-DOF model was developed and applied for 122 mm unguided artillery rocket. All aerodynamic forces and moments coefficients of the given shell are calculated using Missile Datcom.