This is fairly basic introduction to Principles of Analysis, on intermediate undergrad level, strictly in \mathbb{R}^1. The only other similar book I'm familiar is Kirkwood. The books of Rudin, Apostol, etc present the subject on much higher level. My original intention was to take a course with Rudin, but after I've realized I had a hard time digesting his style, I've decided to take more elementary course. I remember on the first reading I didn't feel comfortable with this proof at all. When I discussed this book with professor I was going to take that course with, he (surprisingly) agreed with me and told me he would present a different proof (and he did, much better one). Another example: proof that the modified Dirichlet function is Riemann-integrable. The proof can be substantially simplified. The first of these subjects is an introduction to the notion of proofs and proof methods, and the second one is basic analysis. The first two chapters, Logic and Proof and Sets and Functions, are typically covered in a “Transition to Higher Mathematics” class. The book fills an existing gap by matching these two topics, proofs and analysis, which are usually not taught in the same course. This is great if your students need such a class, but in many places, it can create overlaps — if most students in the class already took a “Transition to Higher Mathematics” class, then they will not need the first two chapters of the book.